Influence of different oxygen partial pressure on oxide ion diffusion in La_{1-x}Sr_xFeO₃

Isao KAGOMIYA, YutoOHYAMA, Ken-ichiKAKIMOTO

Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

To find out an effective new way to improve oxide ion conductivity in the mixed conductive oxides, we are interested in influences of different oxygen partial pressures(P_{02})onoxide ion diffusions. Particularly, this study focused on the ion diffusion of La_{1-x}Sr_xFeO₃, which is a typical mixed conductive perovskite oxide. We investigated total electrical conductivity (σ_t) of the La_{1-x}Sr_xFeO₃(x=0.2, 0.5) in the wide P_{02} range of 10⁻¹-10⁻²⁷atm using a four-probe method. After then, chemical diffusion coefficient D_{chem} in lower- and higher- P_{02} ranges were estimated by using an electrical conductivity relaxation method.[1]

With decreasing P_{02} from 0.21atm, the σ_t decreased in the ranges of $10^{-1}-10^{-5}$ and $10^{-15}-10^{-20}$ atm. With further decrease of P_{02} , the σ_t increased. The result means that the dominating charge carrier ishole (Fe⁴⁺) under high P_{02} range near air. In the P_{02} range around 10^{-20} atm, major valence is Fe³⁺rather than Fe⁴⁺. The D_{chem} in higher P_{02} range of $10^{-1}-10^{-5}$ atmshowed higher values than those in lower P_{02} range of $10^{-5}-10^{-20}$ atm, indicating that the ion diffusion is faster in higher P_{02} range. We suppose that the local structure around the Fe⁴⁺ is related to the faster ion diffusion.

[1] I. Yasuda and T. Hikita, J. Electrochem. Soc. 141 (1994) 1268-1273.