CRYSTAL GROWTH BETWEEN 1250°C AND 1100°C OF CUBIC RARE-EARTH SESQUIOXIDES BY THE FLUX METHOD

<u>Matias VELAZQUEZ</u>¹,Philippe VEBER¹,Gabriel BUSE¹,Grégory GADRET², Olivier PLANTEVIN³,Philippe GOLDNER⁴,Daniel RYTZ⁵, Mark PELTZ⁵, Emmanuel VERON⁶, Rekia BELHOUCIF⁷,Paul-Antoine DOUISSARD⁸, Thierry MARTIN⁸

¹ ICMCB, CNRS, Pessac, France
² LICB, UMR 6303 CNRS-Université de Bourgogne, Dijon, France
³ CSNSM, UMR 8609 CNRS-Université d'Orsay, Orsay, France
⁴ PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie, Paris, France
⁵ Fee GmbH, Idar-Oberstein, Germany
⁶ CEMHTI-CNRS UPR 3079, Orléans, France
⁷ Faculté de Physique, Laboratoire d'Électronique Quantique, USTHB, Bab Ezzouar, Algeria
⁸ ESRF - The European Synchrotron, Grenoble, France

Developing large optical grade cubic rare-earth sesquioxides (RE₂O₃, RE=Sc,Y,Gd,Tb,Lu) single crystals, pure or doped with Yb³⁺ ions, stands as one of the most challenging endeavours of today's crystal growth [1,2]. In recent years, we have unveiled a new flux method for growing such crystals, mainly for optical applications (lasers, scintillators, Faraday rotators). The obvious challenge to their growth in bulk single crystalline shape is imposed by the high melting point of these compounds (\sim 2400-2500°C) and, in some of them like Gd₂O₃ or Tb₂O₃, it is rendered more difficult by a series of structural phase transitions occurring upon cooling from the melting point. The case of Tb₂O₃ turns out to be complicated by its mixed valence character which results in an easy oxidation at intermediate and high temperatures. In this work, we will present large dimensions (several mm^3) of pure Tb_2O_3 crystals,Lu_{1.56}Gd_{0.41}Eu_{0.03}O₃ scintillation crystaland highly Yb³⁺-doped Gd₂O₃, Y₂O₃ and Lu₂O₃ single crystals of the cubic phase which were recently grown by a newly designed hightemperature solution growth method [3]. Furthermore we will report on their characterization by means of X-ray diffraction, visible, near infrared and Fourier transformed infrared (FTIR) spectroscopy, electron probe microanalysis (EPMA) coupled with wavelength dispersive spectroscopy (WDS), chemical analysis by GDMS, specific heat measurements and Squid magnetometry. Our method uses an original and nontoxic solvent with a growth setup operating in air and at half the melting temperature of rare-earth sesquioxides. The hightemperature solution growth conditions will also be discussed. Yb³⁺-substitution levels as high as $Gd_{1.61}Yb_{0.39}O_3$, $Y_{1.69}Yb_{0.31}O_3$ and $Lu_{1.86}Yb_{0.14}O_3$ were reached. In addition to the demonstration that this flux growth process allows achieving optimal doping for high-power laser applications, we will emphasize that it impedes the dissolution of OH⁻ groups in the crystals, avoids the reduction of Yb³⁺ ions into Yb²⁺ and last but not least favours broader absorption and emission bands. These uncoated new Yb³⁺-doped cubic Gd₂O₃ and Y₂O₃ crystals have been successfully tested in different laser cavities under Ti:Sapphire and diode pumping, and the main laser performances will be shown. Our hydrogen free and controlled atmosphere flux method, which uses a heavy metal free solvent working between 1250°C and 1100°C, was also found to remarkably stabilize the Tb³⁺ oxidation state in Tb₂O₃ and the first Verdet constant measurements in the NIR spectral range suggest that these crystals have great potential as Faraday rotators as compared to well-known TGG crystal [4].

[1] A. Yoshikawa and V. Chani, MRS Bulletin, 34 (2009) 266.

[2] A. Fukabori, V. Chani, K. Kamada, F. Moretti and A. Yoshikawa, Cryst. Growth & Des., 11 (2011) 2404.

[3] Ph. Veber, M. Velázquez, V. Jubera, S. Pechev and O. Viraphong, Cryst. Eng. Comm., 13 (16) (2011) 5220.

[4] Ph. Veber, M. Velázquez, G. Gadret, D. Rytz, M. Peltz and R. Decourt, Cryst. Eng. Comm., 17 (3) (2015) 492.